薄膜濾光片
薄膜吸收濾光片是由某種材料的單層薄膜構成的,這種材料的本征吸收限正好對應所要求的截至波長。這種濾波片通常具有長波通特性。半導體材料在其本征吸收限內可以從不透明突變到透明,可以作為優(yōu)質的長波通截止濾光片的極有效材料。
用電子束(EB)蒸發(fā)的TiO2和SiO2薄膜系統(tǒng)具有重要的應用。但是用常規(guī)的蒸發(fā)技術,即使基板的溫度高達300℃以上,薄膜仍呈現(xiàn)出明顯的柱狀結構特性。這種柱狀結構的薄膜,由于膜層中包含著大量的空隙,因此隨著薄膜濾光片吸潮,膜層折射率升高,濾光片的中心波長就會產生明顯的漂移。為了表征這種結構特性,人們提出了聚集密度P,它被定義為薄膜中固體部分的體積與總體積之比。所以它是一個描述薄膜疏松程度的物理量。 隨著離子鍍膜技術的發(fā)展,諸如離子輔助淀積(IAD),反應離子鍍(RIP)和離子束濺射(IBS)等,薄膜的聚集密度得到了顯著的提高,甚至已經有實驗報道,有些薄膜的聚集密度大于1。這意味著薄膜的密度比自然界中的大塊材料的密度還要高,原因是在高聚集密度的薄膜中,常常呈現(xiàn)出較大的壓應力,致使薄膜具有更高的聚集密度。但是,即使薄膜的聚集密度大于1,濾光片中心波長仍會出現(xiàn)漂移。已經認識到,影響薄膜濾光片中心波長漂移的不僅是聚集密度,而且還有薄膜與基板的溫度折射率系數(shù)和熱膨脹系數(shù)。所以濾光片的中心波長漂移可以簡單地表示為Δλ=薄膜空隙吸潮引起的漂移+溫度折射率變化引起的漂移+熱膨脹引起的漂移。 顯然,當采用離子技術使聚集密度提高到1時,吸潮引起的中心波長漂移已可忽略不計,而其他兩種因素上升為主要因素。本文僅從一般工藝出發(fā),著重考察一下TiO2/SiO2組成的三腔濾光片的光學穩(wěn)定性與上述三種因素的關系。實驗結果顯示,在可見光區(qū)域,對于聚集密度約為0.92的膜系,這三種因素中,吸潮引起的中心波長最大,數(shù)量級在10 nm左右。對于膠合的膜系來說,膜系空隙中水汽折射率隨溫度的上升而下降引起的中心波長短移大約在1×10-2nm/℃量級。而熱膨脹引起的漂移大約在1×10-3nm/℃量級

